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Factorial kriging is a technique that aims to either extract features for separate analysis or filter features 
from spatial data.  The technique was proposed by Matheron in the early days of geostatistics.  Factorial 
kriging is of greatest interest to geophysicists and those concerned with image analysis; however, there are 
a number of applications in geostatistics.  This note recalls the theory and practice of factorial kriging with 
a version of kt3d that implements a flexible version of factorial kriging. 

Setting 

Consider a regionalized variable {Z(u), u in A}.  We adopt a linear model of regionalization, that is, the 
Z(u) variable consists of a sum of independent factors and a non-stationary mean: 
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The L+1 standard factors Yl(u) all have a mean of 0 and a variance of 1.  By convention, the 0th factor is 
reserved to an uncorrelated pure nugget effect factor.  The al parameters are stationary, that is, they do not 
depend on location.  The mean and variance of the Z(u) variable are given by: 
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The variance of Z(u) follows such a simple expression because m(u) is a constant and the Y factors are 
standard and independent.  These characteristics of m and Y also lead to a straightforward expression for the 
variogram of the Z(u)variable: 
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The Z(u) regionalized variable is fully specified by m(u), the L+1 al values, and the L+1 variograms γl(h).  
We do not, of course, have any direct measurements of the Y factors.  Nor do we have any direct 
measurements of the al parameters that specify the importance (variance explained) by each of the factors.  
We have access to the mean, variance and variogram of Z.  We potentially have access to an understanding 
of the Z variable and the processes that led to the current regionalization.  The mean and variance are 
unlikely to help us understand the factors, but the variogram may provide a means to distinguish the 
factors.  We will be able to better distinguish the factors if the constituent variograms γl(h) are different 
from one another.  In fact, an essential feature of factorial kriging is to use the fitted nested structures to 
identify the factors.  The reasonableness of factorial kriging depends entirely on the fitted nested structures.  
Ideally, this variogram is based on fitting a well-defined experimental variogram; however, we could use an 
arbitrary model based on an understanding of the variable under consideration. 



 404-2 

Factorial Kriging 

The aim of factorial kriging is to estimate each factor individually, that is, extract different features.  
Another aim of factorial kriging is to filter certain factors.  Factorial kriging consists of estimating the L+2 
factors that constitute the random variable.  The true factors: 
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These factors are estimated by linear combinations of the original data (z(ui),i=1,…,n): 
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The weights are location dependent, but the (u) has been dropped for cleaner notation.  There are no 
obvious reasons why simple kriging or cokriging could not be used; however, the conventional approach to 
factorial kriging is to adopt an ordinary kriging paradigm.  The constraints on the weights are established to 
ensure unbiasedness: 
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The constraint that the sum of the weights in the estimation of a factor equals zero is strong.  This is 
reminiscent of ordinary cokriging where the sum of weights to secondary data are constrained to zero to 
ensure unbiasedness.  This possible limitation will be revisited below. 

The estimation variances are minimized subject to the constraints given in (6) leading to the factorial 
kriging equations: 
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Note that the right hand side covariances on the estimation of the mean (first equation) are zero since the 
mean is a constant albeit unknown.  The right hand side covariances in the estimation of each factor are the 
covariance corresponding to the particular nested structure/factor being estimated.  This is a result of the 
factors being independent.  The redundancy between the data in the left hand side of the kriging equations 
is the covariance between the Z data, that is, the sum of all nested structures.  These L+2 sets of equations 
are solved to arrive at the L+2 estimates of the different factors.  It is interesting to note that the sum of the 
estimates is the conventional ordinary kriging estimate: 
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Like all kriging estimators, the estimates will be smooth in presence of sparse data.  This will undermine 
the usefulness of the results for interpretation.   
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Implementation Details 

The itrend option in kt3d permits estimation of the variable (itrend=0) or the mean (itrend=1).  Estimation 
of the mean is a form of factorial kriging.  A third option was added: itrend=2.  This option specifies 
factorial kriging.  Ordinary kriging will be performed even if it is not specified.  All factors are estimated 
and the estimate is constructed with each factor filtered from the estimation. 

The technique could be applied for exhaustive data; however, because of the unbiasedness constraints used, 
the estimate of the mean will be the collocated gridded data value.  The factors will be positive and 
negative (because they must sum to one) and the weights will be constant for all locations. 

A First Example 

A synthetic example is shown first to show how the approach works.  A synthetic 256x256 2-D Gaussian 
variable was simulated with a small nugget effect (10%) and two isotropic spherical structures equally 
explaining the remaining 90% of the variability.  The ranges of the spherical structures are 16 and 64 units.  
A search radius of 64 units and a large number of previously simulated grid nodes (50) were used to ensure 
that the simulated values reproduce both nested structures.  Data were sampled from the reference grid at a 
very close 5x5 spacing.  The reference grid and sample data are shown on Figure 1. 

As developed above, conventional factorial kriging is based on ordinary kriging.  The sum of the estimate 
of each factor adds up to the ordinary kriging estimate.  This was checked.  The ordinary kriging estimates 
are shown on Figure 2.  The reference variogram was used.  The map appears close to the reference true 
values because of the dense grid of sample data.  Note that the ordinary kriging estimates are smoother than 
the reference values – a characteristic property of all kriging.  Note also that the data are reproduced 
exactly, but with an apparent discontinuity because of the nugget effect.   

The Factorial kriging in kt3d estimates the mean and each factor independently and the estimate filtering 
each factor in turn.  In this example there is the mean and three factors.  Maps of the factors are shown on 
Figure 3.  Although the nugget effect map looks constant, it is not.  There is a discontinuity at each data 
point.  Note that the estimate of the mean reflects the most variability because of the unbiasedness 
constraints. 

Figure 4 shows the estimates with each factor filtered from the estimate.  In the first case (upper left), the 
mean is filtered, then the nugget effect and the two nested structures.  Note that the map filtering the nugget 
effect does not show the discontinuities hear the data values.  The results with the short and long scale 
structures filtered make sense, that is, we reveal more long range structures when we filter the short scale 
and we reveal more short scale structures when we filter the long scale. 

This example shows how factorial kriging works.  It is interesting to look at each factor and at the maps 
filtering each factor.  Although the mean is not supposed to be variable, estimates of the mean show almost 
all of the variability even with a large dense grid of data.  This is a result of the unbiasedness constraints 
used in ordinary factorial kriging. 

A Second Example 

This example is known to many readers.  It was originally published in Deutsch’s Ph.D. thesis (1992) and 
is based on a scanned rock acquired by André Journel in 1990.  The data consist of a 164x85 grid of gray 
scale values that have been transformed to a standard normal distribution. 

All distances are relative to the discretization units of the image with the image being 164 pixels by 85 
pixels.  The variogram model consists of four nested structures with (h1, h2) being the coordinates in the 
two directions corresponding to the sides of the image.  The spherical and exponential structures are 
classical in geostatistics.  The dampened hole effect cosine model is not as commonly used; it is defined as: 
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There are four components in the semivariogram model that correspond to factors in the interpretation of 
factorial kriging: 

1. A short scale anisotropic spherical structure that explains 40% of the total variability (the longer 
range is in the horizontal h2 direction and the shorter range is in the vertical h1 direction). 

2. A second short scale anisotropic spherical structure (with a more pronounced anisotropy along the 
same horizontal and vertical directions) that explains an additional 20% of the variability, 

3. A third anisotropic long range exponential structure (the range parameter is 40.0, thus, the 
effective range is 120.0 in the horizontal direction and 0.0 in the vertical direction ) that explains 
40% of the variability, and 

4. Finally, a dampened hole effect model in the vertical direction to account for the periodicity. 

Factorial kriging leads to six factors: the mean, the nugget effect and the four specified above.  The 
variogram model has no nugget effect effect, but the program automatically treats the mean and nugget 
effect.  Figure 6 shows the factors when kriging with 16 data.  The ordinary kriging estimates are, of 
course, the values in the initial image – kriging is exact.  The mean explains most of the variance.  The 
amount of variance used in each nested structure affects the variability of the factor.  Some features are 
evident, for example, the anisotropic exponential structure does reveal more continuity in the horizontal 
direction.  There are quite a few large negative values in the factor representing the dampened hole effect. 

Conclusions 

Factorial kriging is a well established technique that has been available for many years.  The theory of 
conventional ordinary factorial kriging is recalled and an implementation in the GSLIB kt3d program is 
described.  The program is of interest for geophysical and image analysis applications where there is a goal 
to filter noise or other artifact features from certain data sources. 

There are some evident areas of future work.  The most important is to relax the unbiasedness constraints.  
Forcing the sum of the weights to equal zero in the estimation of each factor amounts appears to 
underestimate the contribution of each factor.  The mean explains the majority of the variance even with 
exhaustive measurements.  There is also the inherent smoothing of kriging with sparse data and the 
possibility of factorial simulation. 

Significant work has been done in multivariate factorial (co)kriging, which warrants further investigation 
and implementation in, perhaps, cokb3d. 
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Figure 1: Reference values and sample data for first example. 

 

 

 

 

 

 
Figure 2: Ordinary kriging for first example. 
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Figure 3: Factors for the first example. 

 
Figure 4: Filtering each factors for the first example. 
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Figure 5: Reference data and variogram for the second example. 
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Figure 6: Factors for the second example. 


